Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool
نویسندگان
چکیده
Background and aims Plant soluble sugars, as main components of primary metabolism, are thought to be implicated in defence against pathogenic fungi. However, the function of sucrose and hexoses remains unclear. This study aimed to identify robust patterns in the dynamics of soluble sugars in sink tissues of tomato plants during the course of infection by the necrotrophic fungus Botrytis cinerea . Distinct roles for glucose and fructose in defence against B. cinerea were hypothesized. Methods We examined sugar contents and defence hormonal markers in tomato stem tissues before and after infection by B. cinerea , in a range of abiotic environments created by various nitrogen and water supplies. Key Results Limited nitrogen or water supplies increased tomato stem susceptibility to B. cinerea . Glucose and fructose contents of tissues surrounding infection sites evolved differently after inoculation. The fructose content never decreased after inoculation with B. cinerea , while that of glucose showed either positive or negative variation, depending on the abiotic environment. An increase in the relative fructose content (defined as the proportion of fructose in the soluble sugar pool) was observed in the absence of glucose accumulation and was associated with lower susceptibility. A lower expression of the salicylic acid marker PR1a , and a lower repression of a jasmonate marker COI1 were associated with reduced susceptibility. Accordingly, COI1 expression was positively correlated with the relative fructose contents 7 d after infection. Conclusions Small variations of fructose content among the sugar pool are unlikely to affect intrinsic pathogen growth. Our results highlight distinct use of host glucose and fructose after infection by B. cinerea and suggest strongly that adjustment of the relative fructose content is required for enhanced plant defence.
منابع مشابه
Anti-Apoptotic Machinery Protects the Necrotrophic Fungus Botrytis cinerea from Host-Induced Apoptotic-Like Cell Death during Plant Infection
Necrotrophic fungi are unable to occupy living plant cells. How such pathogens survive first contact with living host tissue and initiate infection is therefore unclear. Here, we show that the necrotrophic grey mold fungus Botrytis cinerea undergoes massive apoptotic-like programmed cell death (PCD) following germination on the host plant. Manipulation of an anti-apoptotic gene BcBIR1 modified ...
متن کاملAbscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms.
Abscisic acid (ABA) is one of the plant hormones involved in the interaction between plants and pathogens. In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants. Exogenous application of ABA restored susceptibility to B. cinere...
متن کاملRipening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene.
Fruit ripening is a developmental process that is associated with increased susceptibility to the necrotrophic pathogen Botrytis cinerea. Histochemical observations demonstrate that unripe tomato (Solanum lycopersicum) fruit activate pathogen defense responses, but these responses are attenuated in ripe fruit infected by B. cinerea. Tomato fruit ripening is regulated independently and cooperati...
متن کاملTranscriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum
Nitrogen (N) is one of the main limiting nutrients for plant growth and crop yield. It is well documented that changes in nitrate availability, the main N source found in agricultural soils, influences a myriad of developmental programs and processes including the plant defense response. Indeed, many agronomical reports indicate that the plant N nutritional status influences their ability to re...
متن کاملThe non-host pathogen Botrytis cinerea enhances glucose transport in Pinus pinaster suspension-cultured cells.
Botrytis cinerea is the causal agent of grey mould disease and a non-host necrotrophic pathogen of maritime pine (Pinus pinaster). Recent evidence suggests that pathogen challenge can alter carbon uptake in plant cells; however, little is known on how elicitor-derived signalling pathways control sugar transport activity. P. pinaster suspended cells are able to absorb D-[14C]glucose with high af...
متن کامل